Deep convolutional neural networks for efficient pose estimation in gesture videos
Our objective is to efficiently and accurately estimate the upper body pose of humans in gesture videos. To this end, we build on the recent successful applications of deep convolutional neural networks (ConvNets). Our novelties are: (i) our method is the first to our knowledge to use ConvNets for e...
Auteurs principaux: | Pfister, T, Simonyan, K, Charles, J, Zisserman, A |
---|---|
Format: | Conference item |
Langue: | English |
Publié: |
Springer
2015
|
Documents similaires
-
Automatic and efficient human pose estimation for sign language videos
par: Charles, J, et autres
Publié: (2013) -
Flowing ConvNets for human pose estimation in videos
par: Pfister, T, et autres
Publié: (2016) -
Personalizing human video pose estimation
par: Charles, J, et autres
Publié: (2016) -
Two-stream convolutional networks for action recognition in videos
par: Simonyan, K, et autres
Publié: (2014) -
Age Estimation of Faces in Videos Using Head Pose Estimation and Convolutional Neural Networks
par: Beichen Zhang, et autres
Publié: (2022-05-01)