Deep convolutional neural networks for efficient pose estimation in gesture videos
Our objective is to efficiently and accurately estimate the upper body pose of humans in gesture videos. To this end, we build on the recent successful applications of deep convolutional neural networks (ConvNets). Our novelties are: (i) our method is the first to our knowledge to use ConvNets for e...
主要な著者: | Pfister, T, Simonyan, K, Charles, J, Zisserman, A |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
Springer
2015
|
類似資料
-
Automatic and efficient human pose estimation for sign language videos
著者:: Charles, J, 等
出版事項: (2013) -
Flowing ConvNets for human pose estimation in videos
著者:: Pfister, T, 等
出版事項: (2016) -
Personalizing human video pose estimation
著者:: Charles, J, 等
出版事項: (2016) -
Two-stream convolutional networks for action recognition in videos
著者:: Simonyan, K, 等
出版事項: (2014) -
Age Estimation of Faces in Videos Using Head Pose Estimation and Convolutional Neural Networks
著者:: Beichen Zhang, 等
出版事項: (2022-05-01)