Deep convolutional neural networks for efficient pose estimation in gesture videos
Our objective is to efficiently and accurately estimate the upper body pose of humans in gesture videos. To this end, we build on the recent successful applications of deep convolutional neural networks (ConvNets). Our novelties are: (i) our method is the first to our knowledge to use ConvNets for e...
Главные авторы: | Pfister, T, Simonyan, K, Charles, J, Zisserman, A |
---|---|
Формат: | Conference item |
Язык: | English |
Опубликовано: |
Springer
2015
|
Схожие документы
-
Automatic and efficient human pose estimation for sign language videos
по: Charles, J, и др.
Опубликовано: (2013) -
Flowing ConvNets for human pose estimation in videos
по: Pfister, T, и др.
Опубликовано: (2016) -
Personalizing human video pose estimation
по: Charles, J, и др.
Опубликовано: (2016) -
Two-stream convolutional networks for action recognition in videos
по: Simonyan, K, и др.
Опубликовано: (2014) -
Age Estimation of Faces in Videos Using Head Pose Estimation and Convolutional Neural Networks
по: Beichen Zhang, и др.
Опубликовано: (2022-05-01)