Deep convolutional neural networks for efficient pose estimation in gesture videos
Our objective is to efficiently and accurately estimate the upper body pose of humans in gesture videos. To this end, we build on the recent successful applications of deep convolutional neural networks (ConvNets). Our novelties are: (i) our method is the first to our knowledge to use ConvNets for e...
Huvudupphovsmän: | Pfister, T, Simonyan, K, Charles, J, Zisserman, A |
---|---|
Materialtyp: | Conference item |
Språk: | English |
Publicerad: |
Springer
2015
|
Liknande verk
Liknande verk
-
Automatic and efficient human pose estimation for sign language videos
av: Charles, J, et al.
Publicerad: (2013) -
Flowing ConvNets for human pose estimation in videos
av: Pfister, T, et al.
Publicerad: (2016) -
Personalizing human video pose estimation
av: Charles, J, et al.
Publicerad: (2016) -
Two-stream convolutional networks for action recognition in videos
av: Simonyan, K, et al.
Publicerad: (2014) -
Age Estimation of Faces in Videos Using Head Pose Estimation and Convolutional Neural Networks
av: Beichen Zhang, et al.
Publicerad: (2022-05-01)