Sequential Bayesian Estimation for Adaptive Classification
This paper proposes a robust algorithm to adapt a model for EEG signal classification using a modified Extended Kalman Filter (EKF). By applying Bayesian conjugate priors and marginalising the parameters, we can avoid the needs to estimate the covariances of the observation and hidden state noises....
Asıl Yazarlar: | Yoon, J, Roberts, S, Dyson, M, Can, J, IEEE |
---|---|
Materyal Türü: | Conference item |
Baskı/Yayın Bilgisi: |
2008
|
Benzer Materyaller
-
Adaptive classification for Brain Computer Interface systems using Sequential Monte Carlo sampling.
Yazar:: Yoon, J, ve diğerleri
Baskı/Yayın Bilgisi: (2009) -
Bayesian inference for an adaptive Ordered Probit model: an application to Brain Computer Interfacing.
Yazar:: Yoon, J, ve diğerleri
Baskı/Yayın Bilgisi: (2011) -
Sequential classification of mental tasks vs. idle state for EEG based BCIs
Yazar:: Dyson, M, ve diğerleri
Baskı/Yayın Bilgisi: (2009) -
Adaptive Classification by Hybrid EKF with Truncated Filtering: Brain Computer Interfacing
Yazar:: Yoon, J, ve diğerleri
Baskı/Yayın Bilgisi: (2008) -
Sequential Bayesian prediction in the presence of changepoints
Yazar:: Garnett, R, ve diğerleri
Baskı/Yayın Bilgisi: (2009)