Sequential Bayesian Estimation for Adaptive Classification
This paper proposes a robust algorithm to adapt a model for EEG signal classification using a modified Extended Kalman Filter (EKF). By applying Bayesian conjugate priors and marginalising the parameters, we can avoid the needs to estimate the covariances of the observation and hidden state noises....
Những tác giả chính: | Yoon, J, Roberts, S, Dyson, M, Can, J, IEEE |
---|---|
Định dạng: | Conference item |
Được phát hành: |
2008
|
Những quyển sách tương tự
-
Adaptive classification for Brain Computer Interface systems using Sequential Monte Carlo sampling.
Bằng: Yoon, J, et al.
Được phát hành: (2009) -
Bayesian inference for an adaptive Ordered Probit model: an application to Brain Computer Interfacing.
Bằng: Yoon, J, et al.
Được phát hành: (2011) -
Sequential classification of mental tasks vs. idle state for EEG based BCIs
Bằng: Dyson, M, et al.
Được phát hành: (2009) -
Adaptive Classification by Hybrid EKF with Truncated Filtering: Brain Computer Interfacing
Bằng: Yoon, J, et al.
Được phát hành: (2008) -
Sequential Bayesian prediction in the presence of changepoints
Bằng: Garnett, R, et al.
Được phát hành: (2009)