1H and 13C hyperfine coupling constants of the tryptophanyl cation radical in aqueous solution from microsecond time-resolved CIDNP.

Relative values of the 1H and 13C isotropic hyperfine couplings in the cationic oxidized tryptophan radical TrpH*+ in aqueous solution are determined. The data are obtained from the photo-CIDNP (chemically induced dynamic nuclear polarization) enhancements observed in the microsecond time-resolved N...

Full description

Bibliographic Details
Main Authors: Kiryutin, A, Morozova, O, Kuhn, LT, Yurkovskaya, A, Hore, P
Format: Journal article
Language:English
Published: 2007
Description
Summary:Relative values of the 1H and 13C isotropic hyperfine couplings in the cationic oxidized tryptophan radical TrpH*+ in aqueous solution are determined. The data are obtained from the photo-CIDNP (chemically induced dynamic nuclear polarization) enhancements observed in the microsecond time-resolved NMR spectra of the diamagnetic products of photochemical reactions in which TrpH*+ is a transient intermediate. The method is validated using the tyrosyl neutral radical Tyr*, whose 1H and 13C hyperfine couplings have previously been determined by electron paramagnetic resonance spectroscopy. Good agreement is found with hyperfine coupling constants for TrpH*+ calculated using density functional theory methods but only if water molecules are explicitly included in the calculation.