Semantic parsing with semi-supervised sequential autoencoders

We present a novel semi-supervised approach for sequence transduction and apply it to semantic parsing. The unsupervised component is based on a generative model in which latent sentences generate the unpaired logical forms. We apply this method to a number of semantic parsing tasks focusing on doma...

Full description

Bibliographic Details
Main Authors: Kočiský, T, Melis, G, Grefenstette, E, Dyer, C, Ling, W, Blunsom, P, Hermann, K
Format: Conference item
Published: Association for Computational Linguistics 2016
_version_ 1826257771553619968
author Kočiský, T
Melis, G
Grefenstette, E
Dyer, C
Ling, W
Blunsom, P
Hermann, K
author_facet Kočiský, T
Melis, G
Grefenstette, E
Dyer, C
Ling, W
Blunsom, P
Hermann, K
author_sort Kočiský, T
collection OXFORD
description We present a novel semi-supervised approach for sequence transduction and apply it to semantic parsing. The unsupervised component is based on a generative model in which latent sentences generate the unpaired logical forms. We apply this method to a number of semantic parsing tasks focusing on domains with limited access to labelled training data and extend those datasets with synthetically generated logical forms.
first_indexed 2024-03-06T18:23:27Z
format Conference item
id oxford-uuid:071abf74-decf-421c-96e4-2b8724967fac
institution University of Oxford
last_indexed 2024-03-06T18:23:27Z
publishDate 2016
publisher Association for Computational Linguistics
record_format dspace
spelling oxford-uuid:071abf74-decf-421c-96e4-2b8724967fac2022-03-26T09:05:57ZSemantic parsing with semi-supervised sequential autoencodersConference itemhttp://purl.org/coar/resource_type/c_5794uuid:071abf74-decf-421c-96e4-2b8724967facSymplectic Elements at OxfordAssociation for Computational Linguistics2016Kočiský, TMelis, GGrefenstette, EDyer, CLing, WBlunsom, PHermann, KWe present a novel semi-supervised approach for sequence transduction and apply it to semantic parsing. The unsupervised component is based on a generative model in which latent sentences generate the unpaired logical forms. We apply this method to a number of semantic parsing tasks focusing on domains with limited access to labelled training data and extend those datasets with synthetically generated logical forms.
spellingShingle Kočiský, T
Melis, G
Grefenstette, E
Dyer, C
Ling, W
Blunsom, P
Hermann, K
Semantic parsing with semi-supervised sequential autoencoders
title Semantic parsing with semi-supervised sequential autoencoders
title_full Semantic parsing with semi-supervised sequential autoencoders
title_fullStr Semantic parsing with semi-supervised sequential autoencoders
title_full_unstemmed Semantic parsing with semi-supervised sequential autoencoders
title_short Semantic parsing with semi-supervised sequential autoencoders
title_sort semantic parsing with semi supervised sequential autoencoders
work_keys_str_mv AT kociskyt semanticparsingwithsemisupervisedsequentialautoencoders
AT melisg semanticparsingwithsemisupervisedsequentialautoencoders
AT grefenstettee semanticparsingwithsemisupervisedsequentialautoencoders
AT dyerc semanticparsingwithsemisupervisedsequentialautoencoders
AT lingw semanticparsingwithsemisupervisedsequentialautoencoders
AT blunsomp semanticparsingwithsemisupervisedsequentialautoencoders
AT hermannk semanticparsingwithsemisupervisedsequentialautoencoders