Hybrid deep-semantic matrix factorization for tag-aware personalized recommendation
Matrix factorization has now become a dominant solution for personalized recommendation on the Social Web. To alleviate the cold start problem, previous approaches have incorporated various additional sources of information into traditional matrix factorization models. These upgraded models, however...
Những tác giả chính: | Xu, Z, Yuan, D, Lukasiewicz, T, Chen, C, Miao, Y, Xu, G |
---|---|
Định dạng: | Conference item |
Ngôn ngữ: | English |
Được phát hành: |
IEEE Digital Library
2020
|
Những quyển sách tương tự
-
Tag-Aware Personalized Recommendation Using a Hybrid Deep Model
Bằng: Xu, Z, et al.
Được phát hành: (2017) -
Tag-Aware Personalized Recommendation Using a Deep-Semantic Similarity Model with Negative Sampling
Bằng: Xu, Z, et al.
Được phát hành: (2016) -
Location-aware personalized news recommendation with deep semantic analysis
Bằng: Chen, C, et al.
Được phát hành: (2017) -
Location-Aware News Recommendation Using Deep Localized Semantic Analysis
Bằng: Chen, C, et al.
Được phát hành: (2017) -
Lightweight tag-aware personalized recommendation on the social web using ontological similarity
Bằng: Xu, Z, et al.
Được phát hành: (2018)