Hybrid deep-semantic matrix factorization for tag-aware personalized recommendation
Matrix factorization has now become a dominant solution for personalized recommendation on the Social Web. To alleviate the cold start problem, previous approaches have incorporated various additional sources of information into traditional matrix factorization models. These upgraded models, however...
المؤلفون الرئيسيون: | Xu, Z, Yuan, D, Lukasiewicz, T, Chen, C, Miao, Y, Xu, G |
---|---|
التنسيق: | Conference item |
اللغة: | English |
منشور في: |
IEEE Digital Library
2020
|
مواد مشابهة
-
Tag-Aware Personalized Recommendation Using a Hybrid Deep Model
حسب: Xu, Z, وآخرون
منشور في: (2017) -
Tag-Aware Personalized Recommendation Using a Deep-Semantic Similarity Model with Negative Sampling
حسب: Xu, Z, وآخرون
منشور في: (2016) -
Location-aware personalized news recommendation with deep semantic analysis
حسب: Chen, C, وآخرون
منشور في: (2017) -
Location-Aware News Recommendation Using Deep Localized Semantic Analysis
حسب: Chen, C, وآخرون
منشور في: (2017) -
Lightweight tag-aware personalized recommendation on the social web using ontological similarity
حسب: Xu, Z, وآخرون
منشور في: (2018)