Hybrid deep-semantic matrix factorization for tag-aware personalized recommendation
Matrix factorization has now become a dominant solution for personalized recommendation on the Social Web. To alleviate the cold start problem, previous approaches have incorporated various additional sources of information into traditional matrix factorization models. These upgraded models, however...
Hauptverfasser: | Xu, Z, Yuan, D, Lukasiewicz, T, Chen, C, Miao, Y, Xu, G |
---|---|
Format: | Conference item |
Sprache: | English |
Veröffentlicht: |
IEEE Digital Library
2020
|
Ähnliche Einträge
-
Tag-Aware Personalized Recommendation Using a Hybrid Deep Model
von: Xu, Z, et al.
Veröffentlicht: (2017) -
Tag-Aware Personalized Recommendation Using a Deep-Semantic Similarity Model with Negative Sampling
von: Xu, Z, et al.
Veröffentlicht: (2016) -
Location-aware personalized news recommendation with deep semantic analysis
von: Chen, C, et al.
Veröffentlicht: (2017) -
Location-Aware News Recommendation Using Deep Localized Semantic Analysis
von: Chen, C, et al.
Veröffentlicht: (2017) -
Lightweight tag-aware personalized recommendation on the social web using ontological similarity
von: Xu, Z, et al.
Veröffentlicht: (2018)