Hybrid deep-semantic matrix factorization for tag-aware personalized recommendation
Matrix factorization has now become a dominant solution for personalized recommendation on the Social Web. To alleviate the cold start problem, previous approaches have incorporated various additional sources of information into traditional matrix factorization models. These upgraded models, however...
主要な著者: | Xu, Z, Yuan, D, Lukasiewicz, T, Chen, C, Miao, Y, Xu, G |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
IEEE Digital Library
2020
|
類似資料
-
Tag-Aware Personalized Recommendation Using a Hybrid Deep Model
著者:: Xu, Z, 等
出版事項: (2017) -
Tag-Aware Personalized Recommendation Using a Deep-Semantic Similarity Model with Negative Sampling
著者:: Xu, Z, 等
出版事項: (2016) -
Location-aware personalized news recommendation with deep semantic analysis
著者:: Chen, C, 等
出版事項: (2017) -
Location-Aware News Recommendation Using Deep Localized Semantic Analysis
著者:: Chen, C, 等
出版事項: (2017) -
Lightweight tag-aware personalized recommendation on the social web using ontological similarity
著者:: Xu, Z, 等
出版事項: (2018)