Learning unbounded-domain spatiotemporal differential equations using adaptive spectral methods
Rapidly developing machine learning methods have stimulated research interest in computationally reconstructing differential equations (DEs) from observational data, providing insight into the underlying mechanistic models. In this paper, we propose a new neural-ODE-based method that spectrally expa...
Үндсэн зохиолчид: | Xia, M, Li, X, Shen, Q, Chou, T |
---|---|
Формат: | Journal article |
Хэл сонгох: | English |
Хэвлэсэн: |
Springer
2024
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Spectrally adapted physics-informed neural networks for solving unbounded domain problems
-н: Mingtao Xia, зэрэг
Хэвлэсэн: (2023-01-01) -
Efficient hermite spectral-galerkin methods for nonlocal diffusion equations in unbounded domains
-н: Li, Huiyuan, зэрэг
Хэвлэсэн: (2023) -
Efficient mapped spectral methods for unbounded and exterior domains
-н: Batubara, Johan
Хэвлэсэн: (2008) -
Fourier spectral method for the fractional-in-space coupled Whitham–Broer–Kaup equations on unbounded domain
-н: Zhao Li-Fang, зэрэг
Хэвлэсэн: (2024-08-01) -
Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains
-н: Tang, Tao, зэрэг
Хэвлэсэн: (2020)