Learning unbounded-domain spatiotemporal differential equations using adaptive spectral methods
Rapidly developing machine learning methods have stimulated research interest in computationally reconstructing differential equations (DEs) from observational data, providing insight into the underlying mechanistic models. In this paper, we propose a new neural-ODE-based method that spectrally expa...
المؤلفون الرئيسيون: | Xia, M, Li, X, Shen, Q, Chou, T |
---|---|
التنسيق: | Journal article |
اللغة: | English |
منشور في: |
Springer
2024
|
مواد مشابهة
-
Spectrally adapted physics-informed neural networks for solving unbounded domain problems
حسب: Mingtao Xia, وآخرون
منشور في: (2023-01-01) -
Efficient hermite spectral-galerkin methods for nonlocal diffusion equations in unbounded domains
حسب: Li, Huiyuan, وآخرون
منشور في: (2023) -
Efficient mapped spectral methods for unbounded and exterior domains
حسب: Batubara, Johan
منشور في: (2008) -
Fourier spectral method for the fractional-in-space coupled Whitham–Broer–Kaup equations on unbounded domain
حسب: Zhao Li-Fang, وآخرون
منشور في: (2024-08-01) -
Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains
حسب: Tang, Tao, وآخرون
منشور في: (2020)