Learning unbounded-domain spatiotemporal differential equations using adaptive spectral methods
Rapidly developing machine learning methods have stimulated research interest in computationally reconstructing differential equations (DEs) from observational data, providing insight into the underlying mechanistic models. In this paper, we propose a new neural-ODE-based method that spectrally expa...
Hlavní autoři: | Xia, M, Li, X, Shen, Q, Chou, T |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Springer
2024
|
Podobné jednotky
-
Spectrally adapted physics-informed neural networks for solving unbounded domain problems
Autor: Mingtao Xia, a další
Vydáno: (2023-01-01) -
Efficient hermite spectral-galerkin methods for nonlocal diffusion equations in unbounded domains
Autor: Li, Huiyuan, a další
Vydáno: (2023) -
Efficient mapped spectral methods for unbounded and exterior domains
Autor: Batubara, Johan
Vydáno: (2008) -
Fourier spectral method for the fractional-in-space coupled Whitham–Broer–Kaup equations on unbounded domain
Autor: Zhao Li-Fang, a další
Vydáno: (2024-08-01) -
Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains
Autor: Tang, Tao, a další
Vydáno: (2020)