Learning unbounded-domain spatiotemporal differential equations using adaptive spectral methods
Rapidly developing machine learning methods have stimulated research interest in computationally reconstructing differential equations (DEs) from observational data, providing insight into the underlying mechanistic models. In this paper, we propose a new neural-ODE-based method that spectrally expa...
Auteurs principaux: | Xia, M, Li, X, Shen, Q, Chou, T |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
Springer
2024
|
Documents similaires
-
Spectrally adapted physics-informed neural networks for solving unbounded domain problems
par: Mingtao Xia, et autres
Publié: (2023-01-01) -
Efficient hermite spectral-galerkin methods for nonlocal diffusion equations in unbounded domains
par: Li, Huiyuan, et autres
Publié: (2023) -
Efficient mapped spectral methods for unbounded and exterior domains
par: Batubara, Johan
Publié: (2008) -
Fourier spectral method for the fractional-in-space coupled Whitham–Broer–Kaup equations on unbounded domain
par: Zhao Li-Fang, et autres
Publié: (2024-08-01) -
Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains
par: Tang, Tao, et autres
Publié: (2020)