Learning unbounded-domain spatiotemporal differential equations using adaptive spectral methods
Rapidly developing machine learning methods have stimulated research interest in computationally reconstructing differential equations (DEs) from observational data, providing insight into the underlying mechanistic models. In this paper, we propose a new neural-ODE-based method that spectrally expa...
Príomhchruthaitheoirí: | Xia, M, Li, X, Shen, Q, Chou, T |
---|---|
Formáid: | Journal article |
Teanga: | English |
Foilsithe / Cruthaithe: |
Springer
2024
|
Míreanna comhchosúla
Míreanna comhchosúla
-
Spectrally adapted physics-informed neural networks for solving unbounded domain problems
de réir: Mingtao Xia, et al.
Foilsithe / Cruthaithe: (2023-01-01) -
Efficient hermite spectral-galerkin methods for nonlocal diffusion equations in unbounded domains
de réir: Li, Huiyuan, et al.
Foilsithe / Cruthaithe: (2023) -
Efficient mapped spectral methods for unbounded and exterior domains
de réir: Batubara, Johan
Foilsithe / Cruthaithe: (2008) -
Fourier spectral method for the fractional-in-space coupled Whitham–Broer–Kaup equations on unbounded domain
de réir: Zhao Li-Fang, et al.
Foilsithe / Cruthaithe: (2024-08-01) -
Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains
de réir: Tang, Tao, et al.
Foilsithe / Cruthaithe: (2020)