Learning unbounded-domain spatiotemporal differential equations using adaptive spectral methods
Rapidly developing machine learning methods have stimulated research interest in computationally reconstructing differential equations (DEs) from observational data, providing insight into the underlying mechanistic models. In this paper, we propose a new neural-ODE-based method that spectrally expa...
Principais autores: | Xia, M, Li, X, Shen, Q, Chou, T |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado em: |
Springer
2024
|
Registros relacionados
-
Spectrally adapted physics-informed neural networks for solving unbounded domain problems
por: Mingtao Xia, et al.
Publicado em: (2023-01-01) -
Efficient hermite spectral-galerkin methods for nonlocal diffusion equations in unbounded domains
por: Li, Huiyuan, et al.
Publicado em: (2023) -
Efficient mapped spectral methods for unbounded and exterior domains
por: Batubara, Johan
Publicado em: (2008) -
Fourier spectral method for the fractional-in-space coupled Whitham–Broer–Kaup equations on unbounded domain
por: Zhao Li-Fang, et al.
Publicado em: (2024-08-01) -
Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains
por: Tang, Tao, et al.
Publicado em: (2020)