Learning unbounded-domain spatiotemporal differential equations using adaptive spectral methods
Rapidly developing machine learning methods have stimulated research interest in computationally reconstructing differential equations (DEs) from observational data, providing insight into the underlying mechanistic models. In this paper, we propose a new neural-ODE-based method that spectrally expa...
Những tác giả chính: | Xia, M, Li, X, Shen, Q, Chou, T |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
Springer
2024
|
Những quyển sách tương tự
-
Spectrally adapted physics-informed neural networks for solving unbounded domain problems
Bằng: Mingtao Xia, et al.
Được phát hành: (2023-01-01) -
Efficient hermite spectral-galerkin methods for nonlocal diffusion equations in unbounded domains
Bằng: Li, Huiyuan, et al.
Được phát hành: (2023) -
Efficient mapped spectral methods for unbounded and exterior domains
Bằng: Batubara, Johan
Được phát hành: (2008) -
Fourier spectral method for the fractional-in-space coupled Whitham–Broer–Kaup equations on unbounded domain
Bằng: Zhao Li-Fang, et al.
Được phát hành: (2024-08-01) -
Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains
Bằng: Tang, Tao, et al.
Được phát hành: (2020)