On the Evaluation Complexity of Composite Function Minimization with Applications to Nonconvex Nonlinear Programming.

We estimate the worst-case complexity of minimizing an unconstrained, nonconvex composite objective with a structured nonsmooth term by means of some first-order methods. We find that it is unaffected by the nonsmoothness of the objective in that a first-order trust-region or quadratic regularizatio...

Fuld beskrivelse

Bibliografiske detaljer
Main Authors: Cartis, C, Gould, N, Toint, P
Format: Journal article
Sprog:English
Udgivet: 2011
Beskrivelse
Summary:We estimate the worst-case complexity of minimizing an unconstrained, nonconvex composite objective with a structured nonsmooth term by means of some first-order methods. We find that it is unaffected by the nonsmoothness of the objective in that a first-order trust-region or quadratic regularization method applied to it takes at most O(ε-2) function evaluations to reduce the size of a first-order criticality measure below ε. Specializing this result to the case when the composite objective is an exact penalty function allows us to consider the objective- and constraintevaluation worst-case complexity of nonconvex equality-constrained optimization when the solution is computed using a first-order exact penalty method. We obtain that in the reasonable case when the penalty parameters are bounded, the complexity of reaching within ε of a KKT point is at most O(ε-2) problem evaluations, which is the same in order as the function-evaluation complexity of steepest-descent methods applied to unconstrained, nonconvex smooth optimization. © 2011 Society for Industrial and Applied Mathematics.