Long gaps in sieved sets
For each prime p, let Ip⊂Z/pZ denote a collection of residue classes modulo p such that the cardinalities |Ip| are bounded and about 1 on average. We show that for sufficiently large x, the sifted set {n∈Z:n(modp)∉Ipforallp≤x} contains gaps of size x(logx)δ depends only on the densitiy of primes for...
Päätekijät: | Ford, K, Konyagin, S, Maynard, J, Pomerance, C, Tao, T |
---|---|
Aineistotyyppi: | Journal article |
Kieli: | English |
Julkaistu: |
European Mathematical Society
2020
|
Samankaltaisia teoksia
-
Long gaps between primes
Tekijä: Maynard, J, et al.
Julkaistu: (2017) -
Large gaps between consecutive prime numbers
Tekijä: Ford, K, et al.
Julkaistu: (2016) -
Longer gaps between values of binary quadratic forms
Tekijä: Dietmann, R, et al.
Julkaistu: (2022) -
Sieve weights and their smoothings
Tekijä: Granville, A, et al.
Julkaistu: (2021) -
Chains of large gaps between primes
Tekijä: Ford, K, et al.
Julkaistu: (2018)