Long gaps in sieved sets

For each prime p, let Ip⊂Z/pZ denote a collection of residue classes modulo p such that the cardinalities |Ip| are bounded and about 1 on average. We show that for sufficiently large x, the sifted set {n∈Z:n(modp)∉Ipforallp≤x} contains gaps of size x(logx)δ depends only on the densitiy of primes for...

Täydet tiedot

Bibliografiset tiedot
Päätekijät: Ford, K, Konyagin, S, Maynard, J, Pomerance, C, Tao, T
Aineistotyyppi: Journal article
Kieli:English
Julkaistu: European Mathematical Society 2020

Samankaltaisia teoksia