Long gaps in sieved sets
For each prime p, let Ip⊂Z/pZ denote a collection of residue classes modulo p such that the cardinalities |Ip| are bounded and about 1 on average. We show that for sufficiently large x, the sifted set {n∈Z:n(modp)∉Ipforallp≤x} contains gaps of size x(logx)δ depends only on the densitiy of primes for...
Үндсэн зохиолчид: | Ford, K, Konyagin, S, Maynard, J, Pomerance, C, Tao, T |
---|---|
Формат: | Journal article |
Хэл сонгох: | English |
Хэвлэсэн: |
European Mathematical Society
2020
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Long gaps between primes
-н: Maynard, J, зэрэг
Хэвлэсэн: (2017) -
Large gaps between consecutive prime numbers
-н: Ford, K, зэрэг
Хэвлэсэн: (2016) -
Longer gaps between values of binary quadratic forms
-н: Dietmann, R, зэрэг
Хэвлэсэн: (2022) -
Sieve weights and their smoothings
-н: Granville, A, зэрэг
Хэвлэсэн: (2021) -
Chains of large gaps between primes
-н: Ford, K, зэрэг
Хэвлэсэн: (2018)