Long gaps in sieved sets
For each prime p, let Ip⊂Z/pZ denote a collection of residue classes modulo p such that the cardinalities |Ip| are bounded and about 1 on average. We show that for sufficiently large x, the sifted set {n∈Z:n(modp)∉Ipforallp≤x} contains gaps of size x(logx)δ depends only on the densitiy of primes for...
Autores principales: | , , , , |
---|---|
Formato: | Journal article |
Lenguaje: | English |
Publicado: |
European Mathematical Society
2020
|