Graph cut based inference with co-occurrence statistics
Markov and Conditional random fields (crfs) used in computer vision typically model only local interactions between variables, as this is computationally tractable. In this paper we consider a class of global potentials defined over all variables in the crf. We show how they can be readily optimised...
Egile Nagusiak: | Ladicky, L, Russell, C, Kohli, P, Torr, PHS |
---|---|
Formatua: | Conference item |
Hizkuntza: | English |
Argitaratua: |
Springer
2010
|
Antzeko izenburuak
-
Inference methods for CRFs with co-occurrence statistics
nork: Ladický, Ľ, et al.
Argitaratua: (2012) -
Exact and approximate inference in associative hierarchical networks using graph cuts
nork: Russell, C, et al.
Argitaratua: (2010) -
Dynamic graph cuts for efficient inference in Markov random fields
nork: Kohli, P, et al.
Argitaratua: (2007) -
Measuring uncertainty in graph cut solutions
nork: Kohli, P, et al.
Argitaratua: (2008) -
Measuring uncertainty in graph cut solutions – efficiently computing min-marginal energies using dynamic graph cuts
nork: Kohli, P, et al.
Argitaratua: (2006)