What Is the Nature of Little Red Dots and what Is Not, MIRI SMILES Edition

We study 31 little red dots (LRD) detected by JADES/NIRCam and covered by the SMILES/MIRI survey, of which ∼70% are detected in the two bluest MIRI bands and 40% in redder MIRI filters. The median/quartiles redshifts are z=6.95.97.7 (55% spectroscopic). The spectral slopes flatten in the rest-frame...

Full description

Bibliographic Details
Main Authors: Pérez-González, PG, Barro, G, Rieke, GH, Lyu, J, Rieke, M, Alberts, S, Williams, CC, Hainline, K, Sun, F, Puskás, D, Annunziatella, M, Baker, WM, Bunker, AJ, Egami, E, Ji, Z, Johnson, BD, Robertson, B, Rodríguez Del Pino, B, Rujopakarn, W, Shivaei, I, Tacchella, S, Willmer, CNA, Willott, C
Format: Journal article
Language:English
Published: American Astronomical Society 2024
Description
Summary:We study 31 little red dots (LRD) detected by JADES/NIRCam and covered by the SMILES/MIRI survey, of which ∼70% are detected in the two bluest MIRI bands and 40% in redder MIRI filters. The median/quartiles redshifts are z=6.95.97.7 (55% spectroscopic). The spectral slopes flatten in the rest-frame near-infrared, consistent with a 1.6 μm stellar bump but bluer than direct pure emission from active galactic nuclei (AGN) tori. The apparent dominance of stellar emission at these wavelengths for many LRDs expedites stellar mass estimation: the median/quartiles are logM⋆/M⊙=9.49.19.7 . The number density of LRDs is 10−4.0±0.1 Mpc−3, accounting for 14% ± 3% of the global population of galaxies with similar redshifts and masses. The rest-frame near-/mid-infrared (2–4 μm) spectral slope reveals significant amounts of warm dust (bolometric attenuation ∼3–4 mag). Our spectral energy distribution modeling implies the presence of <0.4 kpc diameter knots, heated by either dust-enshrouded OB stars or an AGN producing a similar radiation field, obscured by A(V) > 10 mag. We find a wide variety in the nature of LRDs. However, the best-fitting models for many of them correspond to extremely intense and compact starburst galaxies with mass-weighted ages 5–10 Myr, very efficient in producing dust, with their global energy output dominated by the direct (in the flat rest-frame ultraviolet and optical spectral range) and dust-recycled emission from OB stars with some contribution from an obscured AGN (in the infrared).