Multimodal probabilistic reasoning for prediction and coordination problems in machine learning
<p>In this thesis we consider the role of multimodality in decision making and coordination problems in machine learning. We propose the use of a series of multimodal probabilistic methods, using extensions of (finite) mixture models to tackle challenges in time series forecasting, efficient u...
Главный автор: | Zand, J |
---|---|
Другие авторы: | Roberts, S |
Формат: | Диссертация |
Язык: | English |
Опубликовано: |
2021
|
Предметы: |
Схожие документы
-
Tractable probabilistic models for causal learning and reasoning
по: Wang, B
Опубликовано: (2023) -
Machine learning : a probabilistic perspective /
по: Kevin P. Murphy
Опубликовано: (2012) -
Channel Mixer Layer: Multimodal Fusion Toward Machine Reasoning for Spatiotemporal Predictive Learning of Ionospheric Total Electron Content
по: Peng Liu, и др.
Опубликовано: (2024-12-01) -
Probabilistic Flight Delay Predictions Using Machine Learning and Applications to the Flight-to-Gate Assignment Problem
по: Micha Zoutendijk, и др.
Опубликовано: (2021-05-01) -
Probabilistic Predictions with Federated Learning
по: Adam Thor Thorgeirsson, и др.
Опубликовано: (2020-12-01)