Multimodal probabilistic reasoning for prediction and coordination problems in machine learning
<p>In this thesis we consider the role of multimodality in decision making and coordination problems in machine learning. We propose the use of a series of multimodal probabilistic methods, using extensions of (finite) mixture models to tackle challenges in time series forecasting, efficient u...
Auteur principal: | Zand, J |
---|---|
Autres auteurs: | Roberts, S |
Format: | Thèse |
Langue: | English |
Publié: |
2021
|
Sujets: |
Documents similaires
-
Tractable probabilistic models for causal learning and reasoning
par: Wang, B
Publié: (2023) -
Machine learning : a probabilistic perspective /
par: Kevin P. Murphy
Publié: (2012) -
Channel Mixer Layer: Multimodal Fusion Toward Machine Reasoning for Spatiotemporal Predictive Learning of Ionospheric Total Electron Content
par: Peng Liu, et autres
Publié: (2024-12-01) -
Probabilistic Flight Delay Predictions Using Machine Learning and Applications to the Flight-to-Gate Assignment Problem
par: Micha Zoutendijk, et autres
Publié: (2021-05-01) -
Probabilistic Predictions with Federated Learning
par: Adam Thor Thorgeirsson, et autres
Publié: (2020-12-01)