Multimodal probabilistic reasoning for prediction and coordination problems in machine learning
<p>In this thesis we consider the role of multimodality in decision making and coordination problems in machine learning. We propose the use of a series of multimodal probabilistic methods, using extensions of (finite) mixture models to tackle challenges in time series forecasting, efficient u...
Autor principal: | Zand, J |
---|---|
Outros Autores: | Roberts, S |
Formato: | Tese |
Idioma: | English |
Publicado em: |
2021
|
Assuntos: |
Registros relacionados
-
Tractable probabilistic models for causal learning and reasoning
por: Wang, B
Publicado em: (2023) -
Machine learning : a probabilistic perspective /
por: Kevin P. Murphy
Publicado em: (2012) -
Channel Mixer Layer: Multimodal Fusion Toward Machine Reasoning for Spatiotemporal Predictive Learning of Ionospheric Total Electron Content
por: Peng Liu, et al.
Publicado em: (2024-12-01) -
Probabilistic Flight Delay Predictions Using Machine Learning and Applications to the Flight-to-Gate Assignment Problem
por: Micha Zoutendijk, et al.
Publicado em: (2021-05-01) -
Probabilistic Predictions with Federated Learning
por: Adam Thor Thorgeirsson, et al.
Publicado em: (2020-12-01)