Multimodal probabilistic reasoning for prediction and coordination problems in machine learning
<p>In this thesis we consider the role of multimodality in decision making and coordination problems in machine learning. We propose the use of a series of multimodal probabilistic methods, using extensions of (finite) mixture models to tackle challenges in time series forecasting, efficient u...
Автор: | Zand, J |
---|---|
Інші автори: | Roberts, S |
Формат: | Дисертація |
Мова: | English |
Опубліковано: |
2021
|
Предмети: |
Схожі ресурси
-
Tractable probabilistic models for causal learning and reasoning
за авторством: Wang, B
Опубліковано: (2023) -
Machine learning : a probabilistic perspective /
за авторством: Kevin P. Murphy
Опубліковано: (2012) -
Channel Mixer Layer: Multimodal Fusion Toward Machine Reasoning for Spatiotemporal Predictive Learning of Ionospheric Total Electron Content
за авторством: Peng Liu, та інші
Опубліковано: (2024-12-01) -
Probabilistic Flight Delay Predictions Using Machine Learning and Applications to the Flight-to-Gate Assignment Problem
за авторством: Micha Zoutendijk, та інші
Опубліковано: (2021-05-01) -
Probabilistic Predictions with Federated Learning
за авторством: Adam Thor Thorgeirsson, та інші
Опубліковано: (2020-12-01)