Looking beyond single images for contrastive semantic segmentation learning
We present an approach to contrastive representation learning for semantic segmentation. Our approach leverages the representational power of existing feature extractors to find corresponding regions across images. These cross-image correspondences are used as auxiliary labels to guide the pixel-lev...
Principais autores: | Zhang, F, Torr, P, Ranftl, R, Richter, S |
---|---|
Formato: | Conference item |
Idioma: | English |
Publicado em: |
Neural Information Processing Systems Foundation
2021
|
Registros relacionados
-
Open vocabulary semantic segmentation with Patch Aligned Contrastive Learning
por: Mukhoti, J, et al.
Publicado em: (2023) -
Scalable cascade inference for semantic image segmentation
por: Sturgess, P, et al.
Publicado em: (2012) -
Dense semantic image segmentation with objects and attributes
por: Zheng, S, et al.
Publicado em: (2014) -
Pyramid Context Contrast for Semantic Segmentation
por: Yuzhong Chen, et al.
Publicado em: (2019-01-01) -
Highly Contrast Image Correction for Dim Boundary Separation of Image Semantic Segmentation
por: Jinyeob Choi, et al.
Publicado em: (2021-01-01)