Looking beyond single images for contrastive semantic segmentation learning
We present an approach to contrastive representation learning for semantic segmentation. Our approach leverages the representational power of existing feature extractors to find corresponding regions across images. These cross-image correspondences are used as auxiliary labels to guide the pixel-lev...
Main Authors: | Zhang, F, Torr, P, Ranftl, R, Richter, S |
---|---|
格式: | Conference item |
语言: | English |
出版: |
Neural Information Processing Systems Foundation
2021
|
相似书籍
-
Open vocabulary semantic segmentation with Patch Aligned Contrastive Learning
由: Mukhoti, J, et al.
出版: (2023) -
Scalable cascade inference for semantic image segmentation
由: Sturgess, P, et al.
出版: (2012) -
Dense semantic image segmentation with objects and attributes
由: Zheng, S, et al.
出版: (2014) -
Pyramid Context Contrast for Semantic Segmentation
由: Yuzhong Chen, et al.
出版: (2019-01-01) -
Highly Contrast Image Correction for Dim Boundary Separation of Image Semantic Segmentation
由: Jinyeob Choi, et al.
出版: (2021-01-01)