Robustness of 3D deep learning in an adversarial setting
Understanding the spatial arrangement and nature of real-world objects is of paramount importance to many complex engineering tasks, including autonomous navigation. Deep learning has revolutionized state-of-the-art performance for tasks in 3D environments; however, relatively little is known about...
Hauptverfasser: | Wicker, M, Kwiatkowska, M |
---|---|
Format: | Conference item |
Sprache: | English |
Veröffentlicht: |
IEEE
2020
|
Ähnliche Einträge
Ähnliche Einträge
-
Adversarial robustness certification for Bayesian neural networks
von: Wicker, M, et al.
Veröffentlicht: (2024) -
Bayesian inference with certifiable adversarial robustness
von: Wicker, M, et al.
Veröffentlicht: (2021) -
Adversarial robustness of Bayesian neural networks
von: Wicker, M
Veröffentlicht: (2021) -
Adversarial robustness of deep reinforcement learning
von: Qu, Xinghua
Veröffentlicht: (2022) -
Adversarial robustness guarantees for Gaussian processes
von: Patane, A, et al.
Veröffentlicht: (2022)