Robustness of 3D deep learning in an adversarial setting
Understanding the spatial arrangement and nature of real-world objects is of paramount importance to many complex engineering tasks, including autonomous navigation. Deep learning has revolutionized state-of-the-art performance for tasks in 3D environments; however, relatively little is known about...
Автори: | Wicker, M, Kwiatkowska, M |
---|---|
Формат: | Conference item |
Мова: | English |
Опубліковано: |
IEEE
2020
|
Схожі ресурси
Схожі ресурси
-
Adversarial robustness certification for Bayesian neural networks
за авторством: Wicker, M, та інші
Опубліковано: (2024) -
Bayesian inference with certifiable adversarial robustness
за авторством: Wicker, M, та інші
Опубліковано: (2021) -
Adversarial robustness of Bayesian neural networks
за авторством: Wicker, M
Опубліковано: (2021) -
Adversarial robustness of deep reinforcement learning
за авторством: Qu, Xinghua
Опубліковано: (2022) -
Adversarial robustness guarantees for Gaussian processes
за авторством: Patane, A, та інші
Опубліковано: (2022)