Almost periodicity of mild solutions of inhomogeneous periodic cauchy problems
We consider a mild solution u of a well-posed, inhomogeneous, Cauchy problem, u(t)=A(t)u(t)+f(t), on a Banach space X, where A(·) is periodic. For a problem on R+, we show that u is asymptotically almost periodic if f is asymptotically almost periodic, u is bounded, uniformly continuous and totally...
Hoofdauteurs: | Batty, C, Hutter, W, Rabiger, F |
---|---|
Formaat: | Journal article |
Taal: | English |
Gepubliceerd in: |
Elsevier
1999
|
Gelijkaardige items
-
Asymptotically almost periodic solutions of inhomogeneous Cauchy problems on the half-line
door: Arendt, W, et al.
Gepubliceerd in: (1999) -
Almost periodic solutions of first- and second-order Cauchy problems
door: Arendt, W, et al.
Gepubliceerd in: (1997) -
Bounded convolutions and solutions of inhomogeneous Cauchy problems
door: Batty, C, et al.
Gepubliceerd in: (1999) -
Almost Periodic (Type) Solutions to Parabolic Cauchy Inverse Problems
door: Fenglin Yang, et al.
Gepubliceerd in: (2012-01-01) -
Tauberian theorems and stability of solutions of the Cauchy problem
door: Batty, C, et al.
Gepubliceerd in: (1998)