Tailoring the magnetic exchange interaction in MnBi2Te4 superlattices via the intercalation of ferromagnetic layers
<p>The intrinsic magnetic topological insulator MnBi<sub>2</sub>Te<sub>4</sub> (MBT) provides a platform for the creation of exotic quantum phenomena. Novel properties can be created by modification of the MnBi<sub>2</sub>Te<sub>4</sub>&...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Springer Nature
2022
|
Summary: | <p>The intrinsic magnetic topological insulator MnBi<sub>2</sub>Te<sub>4</sub> (MBT) provides a platform for the creation of exotic quantum phenomena. Novel properties can be created by modification of the MnBi<sub>2</sub>Te<sub>4</sub> framework, but the design of stable magnetic structures remains challenging. Here we report ferromagnet-intercalated MnBi<sub>2</sub>Te<sub>4</sub> superlattices with tunable magnetic exchange interactions. Using molecular beam epitaxy, we intercalate ferromagnetic MnTe layers into MnBi<sub>2</sub>Te<sub>4</sub> to create [(MBT)(MnTe)<sub><em>m</em></sub>]<sub><em>N</em></sub> superlattices and examine their magnetic interaction properties using polarized neutron reflectometry and magnetoresistance measurements. Incorporation of the ferromagnetic spacer tunes the antiferromagnetic interlayer coupling of the MnBi<sub>2</sub>Te<sub>4</sub> layers through the exchange-spring effect at MnBi<sub>2</sub>Te<sub>4</sub>/MnTe hetero-interfaces. The MnTe thickness can be used to modulate the relative strengths of the ferromagnetic and antiferromagnetic order, and the superlattice periodicity can tailor the spin configurations of the synthesized multilayers.</p> |
---|