Towards a spatio-temporal deep learning approach to predict malaria outbreaks using earth observation measurements in South Asia
Environmental indicators can play a crucial role in forecasting infectious disease outbreaks, holding promise for community-level interventions. Yet, significant gaps exist in the literature regarding the influence of changes in environmental conditions on disease spread over time and across differe...
Glavni autori: | Nazir, U, Ejaz, A, Quddoos, MT, Uppal, M, Khalid, S |
---|---|
Format: | Conference item |
Jezik: | English |
Izdano: |
Climate Change AI
2023
|
Slični predmeti
-
Predicting malaria outbreaks using earth observation measurements and spatiotemporal deep learning modelling: a South Asian case study from 2000 to 2017
od: Nazir, U, i dr.
Izdano: (2024) -
Predicting malaria outbreaks using earth observation measurements and spatiotemporal deep learning modelling: a South Asian case study from 2000 to 2017
od: Usman Nazir, PhD, i dr.
Izdano: (2024-04-01) -
Humanitarian costs of climate change: mapping the impact of 2022 Pakistan floods on disruption to education and health using earth observation and data fusion
od: Nazir, U, i dr.
Izdano: (2024) -
Developing the Role of Earth Observation in Spatio-Temporal Mosquito Modelling to Identify Malaria Hot-Spots
od: Christopher Marston, i dr.
Izdano: (2022-12-01) -
Spatio-Temporal Characteristics for Moon-Based Earth Observations
od: Jing Huang, i dr.
Izdano: (2020-09-01)