A dual adversarial calibration framework for automatic fetal brain biometry

This paper presents a novel approach to automatic fetal brain biometry motivated by needs in low- and medium-income countries. Specifically, we leverage high-end (HE) ultrasound images to build a biometry solution for low-cost (LC) point-of-care ultrasound images. We propose a novel unsupervised dom...

Full description

Bibliographic Details
Main Authors: Gao, Y, Lee, L, Droste, R, Craik, R, Beriwal, S, Papageorghiou, A, Noble, A
Format: Conference item
Language:English
Published: IEEE 2021
Description
Summary:This paper presents a novel approach to automatic fetal brain biometry motivated by needs in low- and medium-income countries. Specifically, we leverage high-end (HE) ultrasound images to build a biometry solution for low-cost (LC) point-of-care ultrasound images. We propose a novel unsupervised domain adaptation approach to train deep models to be invariant to significant image distribution shift between the image types. Our proposed method, which employs a Dual Adversarial Calibration (DAC) framework, consists of adversarial pathways which enforce model invariance to; i) adversarial perturbations in the feature space derived from LC images, and ii) appearance domain discrepancy. Our Dual Adversarial Calibration method estimates transcerebellar diameter and head circumference on images from low-cost ultrasound devices with a mean absolute error (MAE) of 2.43mm and 1.65mm, compared with 7.28 mm and 5.65 mm respectively for SOTA.