Directed assembly of optically bound matter.
We present a study of optically bound matter formation in a counter-propagating evanescent field, exploiting total internal reflection on a prism surface. Small ensembles of silica microspheres are assembled in a controlled manner using optical tweezers. The structures and dynamics of the resulting...
Main Authors: | , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Optical Society of American (OSA)
2012
|
Summary: | We present a study of optically bound matter formation in a counter-propagating evanescent field, exploiting total internal reflection on a prism surface. Small ensembles of silica microspheres are assembled in a controlled manner using optical tweezers. The structures and dynamics of the resulting optically bound chains are interpreted using a simulation implementing generalized Lorentz-Mie theory. In particular, we observe enhancement of the scattering force along the propagation direction of the optically bound colloidal chains leading to a microscopic analogue of a driven pendulum which, at least superficially, resembles Newton's cradle. |
---|