Metabelian Lie powers of the natural module for a general linear group

Bibliographic Details
Main Authors: Erdmann, K, Kovacs, L
Format: Journal article
Published: 2012
_version_ 1826258158047199232
author Erdmann, K
Kovacs, L
author_facet Erdmann, K
Kovacs, L
author_sort Erdmann, K
collection OXFORD
description
first_indexed 2024-03-06T18:29:36Z
format Journal article
id oxford-uuid:0930b5f2-f5df-4ccc-a269-d2aba02ec54c
institution University of Oxford
last_indexed 2024-03-06T18:29:36Z
publishDate 2012
record_format dspace
spelling oxford-uuid:0930b5f2-f5df-4ccc-a269-d2aba02ec54c2022-03-26T09:16:52ZMetabelian Lie powers of the natural module for a general linear groupJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:0930b5f2-f5df-4ccc-a269-d2aba02ec54cSymplectic Elements at Oxford2012Erdmann, KKovacs, L
spellingShingle Erdmann, K
Kovacs, L
Metabelian Lie powers of the natural module for a general linear group
title Metabelian Lie powers of the natural module for a general linear group
title_full Metabelian Lie powers of the natural module for a general linear group
title_fullStr Metabelian Lie powers of the natural module for a general linear group
title_full_unstemmed Metabelian Lie powers of the natural module for a general linear group
title_short Metabelian Lie powers of the natural module for a general linear group
title_sort metabelian lie powers of the natural module for a general linear group
work_keys_str_mv AT erdmannk metabelianliepowersofthenaturalmoduleforagenerallineargroup
AT kovacsl metabelianliepowersofthenaturalmoduleforagenerallineargroup