Local a posteriori error estimator based on the hypercircle method
The error of the finite element solution of linear elliptic problems can be estimated a posteriori by the classical hypercircle method. This method gives accurate and guaranteed upper bound of the error measured in the energy norm. The disadvantage is that a global dual problem has to be solved, whi...
Auteur principal: | Vejchodský, T |
---|---|
Format: | Book section |
Publié: |
2004
|
Documents similaires
-
Guaranteed and locally computable a posteriori error estimate
par: Vejchodský, T
Publié: (2006) -
Complementarity based a posteriori error estimates and their properties.
par: Vejchodský, T
Publié: (2012) -
A Posteriori Error Estimates for Axisymmetric and Nonlinear Problems.
par: Krízek, M, et autres
Publié: (2001) -
A note on hypercircle inequality for data error with l 1 $l^{1}$ norm
par: Kannika Khompungson, et autres
Publié: (2022-06-01) -
Fully computable robust a posteriori error bounds for singularly perturbed reaction-diffusion problems
par: Ainsworth, M, et autres
Publié: (2011)