Identical phase oscillator networks: bifurcations, symmetry and reversibility for generalized coupling
For a system of coupled identical phase oscillators with full permutation symmetry, any broken symmetries in dynamical behaviour must come from spontaneous symmetry breaking, i.e. from the nonlinear dynamics of the system. The dynamics of phase differences for such a system depends only on the coupl...
主要な著者: | Ashwin, P, Bick, C, Burylko, O |
---|---|
フォーマット: | Journal article |
出版事項: |
Frontiers Media
2016
|
類似資料
-
Global Bifurcations Organizing Weak Chimeras in Three Symmetrically Coupled Kuramoto Oscillators with Inertia
著者:: Ashwin, P, 等
出版事項: (2025) -
Chaos in generically coupled phase oscillator networks with nonpairwise interactions.
著者:: Bick, C, 等
出版事項: (2016) -
Hopf bifurcations of twisted states in phase oscillators rings with nonpairwise higher-order interactions
著者:: Bick, C, 等
出版事項: (2024) -
Hopf bifurcations of twisted states in phase oscillators rings with nonpairwise higher-order interactions
著者:: Christian Bick, 等
出版事項: (2024-01-01) -
Bifurcation Analysis and Spatiotemporal Patterns of Nonlinear Oscillations in a Ring Lattice of Identical Neurons with Delayed Coupling
著者:: Jiao Jiang, 等
出版事項: (2014-01-01)