Multiple-subjects connectivity-based parcellation using hierarchical Dirichlet process mixture models.
We propose a hierarchical infinite mixture model approach to address two issues in connectivity-based parcellations: (i) choosing the number of clusters, and (ii) combining data from different subjects. In a Bayesian setting, we model voxel-wise anatomical connectivity profiles as an infinite mixtur...
主要な著者: | Jbabdi, S, Woolrich, M, Behrens, T |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
2009
|
類似資料
類似資料
-
Tractography segmentation using a hierarchical Dirichlet processes mixture model
著者:: Wang, Xiaogang, 等
出版事項: (2020) -
Spatially constrained hierarchical parcellation of the brain with resting-state fMRI.
著者:: Blumensath, T, 等
出版事項: (2013) -
Dynamic classification of fetal heart rates by hierarchical Dirichlet process mixture models.
著者:: Kezi Yu, 等
出版事項: (2017-01-01) -
Hierarchical Dirichlet processes
著者:: Teh, Y, 等
出版事項: (2006) -
Hierarchical Dirichlet Process Based Gamma Mixture Modeling for Terahertz Band Wireless Communication Channels
著者:: Erhan Karakoca, 等
出版事項: (2022-01-01)