Uniqueness of degree-one Ginzburg-Landau vortex in the unit ball in dimensions $N \geq 7$

For ε > 0, we consider the Ginzburg-Landau functional for R N -valued maps defined in the unit ball BN ⊂ R N with the vortex boundary data x on ∂BN . In dimensions N ≥ 7, we prove that for every ε > 0, there exists a unique global minimizer uε of this problem; moreover, uε is symmetric...

Olles dieđut

Bibliográfalaš dieđut
Váldodahkkit: Ignat, R, Nguyen, L, Slastikov, V, Zarnescu, A
Materiálatiipa: Journal article
Almmustuhtton: Elsevier 2018
Govvádus
Čoahkkáigeassu:For ε > 0, we consider the Ginzburg-Landau functional for R N -valued maps defined in the unit ball BN ⊂ R N with the vortex boundary data x on ∂BN . In dimensions N ≥ 7, we prove that for every ε > 0, there exists a unique global minimizer uε of this problem; moreover, uε is symmetric and of the form uε(x) = fε(|x|) x |x| for x ∈ BN .