Uniqueness of degree-one Ginzburg-Landau vortex in the unit ball in dimensions $N \geq 7$
For ε > 0, we consider the Ginzburg-Landau functional for R N -valued maps defined in the unit ball BN ⊂ R N with the vortex boundary data x on ∂BN . In dimensions N ≥ 7, we prove that for every ε > 0, there exists a unique global minimizer uε of this problem; moreover, uε is symmetric...
Main Authors: | Ignat, R, Nguyen, L, Slastikov, V, Zarnescu, A |
---|---|
Format: | Journal article |
Published: |
Elsevier
2018
|
Similar Items
-
On the uniqueness of minimisers of Ginzburg-Landau functionals: Sur l'unicité des minimiseurs de la fonctionnelle de Ginzburg-Landau
by: Ignat, R, et al.
Published: (2020) -
Minimality of vortex solutions to Ginzburg--Landau type systems for gradient fields in the unit ball in dimension N ≥ 4
by: Ignat, R, et al.
Published: (2025) -
Minimality of Vortex Solutions to Ginzburg–Landau Type Systems for Gradient Fields in the Unit Ball in Dimension N ≥ 4
by: Ignat, R, et al.
Published: (2025) -
Local minimality of RN-valued and SN-valuedGinzburg–Landau vortex solutions in the unit ball BN
by: Ignat, R, et al.
Published: (2023) -
Quantitative uniqueness and vortex degree estimates for solutions of the Ginzburg-Landau equation
by: Igor Kukavica
Published: (2000-10-01)