The impact of ISM turbulence, clustered star formation and feedback on galaxy mass assembly through cold flows and mergers

Two of the dominant channels for galaxy mass assembly are cold flows (cold gas supplied via the filaments of the cosmic web) and mergers. How these processes combine in a cosmological setting, at both low and high redshift, to produce the whole zoo of galaxies we observe is largely unknown. Indeed t...

Full description

Bibliographic Details
Main Authors: Powell, L, Bournaud, F, Chapon, D, Devriendt, J, Slyz, A, Teyssier, R
Format: Journal article
Language:English
Published: 2010
_version_ 1797052683010441216
author Powell, L
Bournaud, F
Chapon, D
Devriendt, J
Slyz, A
Teyssier, R
author_facet Powell, L
Bournaud, F
Chapon, D
Devriendt, J
Slyz, A
Teyssier, R
author_sort Powell, L
collection OXFORD
description Two of the dominant channels for galaxy mass assembly are cold flows (cold gas supplied via the filaments of the cosmic web) and mergers. How these processes combine in a cosmological setting, at both low and high redshift, to produce the whole zoo of galaxies we observe is largely unknown. Indeed there is still much to understand about the detailed physics of each process in isolation. While these formation channels have been studied using hydrodynamical simulations, here we study their impact on gas properties and star formation (SF) with some of the first from simulations that capture the multiphase, cloudy nature of the interstellar medium (ISM), by virtue of their high spatial resolution (and corresponding low temperature threshold). In this regime, we examine the competition between cold flows and a supernovae(SNe)-driven outflow in a very high-redshift galaxy (z ≈ 9) and study the evolution of equal-mass galaxy mergers at low and high redshift, focusing on the induced SF. We find that SNe-driven outflows cannot reduce the cold accretion at z ≈ 9 and that SF is actually enhanced due to the ensuing metal enrichment. We demonstrate how several recent observational results on galaxy populations (e.g. enhanced HCN/CO ratios in ULIRGs, a separate Kennicutt Schmidt (KS) sequence for starbursts and the population of compact early type galaxies (ETGs) at high redshift) can be explained with mechanisms captured in galaxy merger simulations, provided that the multiphase nature of the ISM is resolved. © Copyright International Astronomical Union 2011.
first_indexed 2024-03-06T18:34:33Z
format Journal article
id oxford-uuid:0ac5aabf-2bdd-4e86-9006-82360764d055
institution University of Oxford
language English
last_indexed 2024-03-06T18:34:33Z
publishDate 2010
record_format dspace
spelling oxford-uuid:0ac5aabf-2bdd-4e86-9006-82360764d0552022-03-26T09:25:41ZThe impact of ISM turbulence, clustered star formation and feedback on galaxy mass assembly through cold flows and mergersJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:0ac5aabf-2bdd-4e86-9006-82360764d055EnglishSymplectic Elements at Oxford2010Powell, LBournaud, FChapon, DDevriendt, JSlyz, ATeyssier, RTwo of the dominant channels for galaxy mass assembly are cold flows (cold gas supplied via the filaments of the cosmic web) and mergers. How these processes combine in a cosmological setting, at both low and high redshift, to produce the whole zoo of galaxies we observe is largely unknown. Indeed there is still much to understand about the detailed physics of each process in isolation. While these formation channels have been studied using hydrodynamical simulations, here we study their impact on gas properties and star formation (SF) with some of the first from simulations that capture the multiphase, cloudy nature of the interstellar medium (ISM), by virtue of their high spatial resolution (and corresponding low temperature threshold). In this regime, we examine the competition between cold flows and a supernovae(SNe)-driven outflow in a very high-redshift galaxy (z ≈ 9) and study the evolution of equal-mass galaxy mergers at low and high redshift, focusing on the induced SF. We find that SNe-driven outflows cannot reduce the cold accretion at z ≈ 9 and that SF is actually enhanced due to the ensuing metal enrichment. We demonstrate how several recent observational results on galaxy populations (e.g. enhanced HCN/CO ratios in ULIRGs, a separate Kennicutt Schmidt (KS) sequence for starbursts and the population of compact early type galaxies (ETGs) at high redshift) can be explained with mechanisms captured in galaxy merger simulations, provided that the multiphase nature of the ISM is resolved. © Copyright International Astronomical Union 2011.
spellingShingle Powell, L
Bournaud, F
Chapon, D
Devriendt, J
Slyz, A
Teyssier, R
The impact of ISM turbulence, clustered star formation and feedback on galaxy mass assembly through cold flows and mergers
title The impact of ISM turbulence, clustered star formation and feedback on galaxy mass assembly through cold flows and mergers
title_full The impact of ISM turbulence, clustered star formation and feedback on galaxy mass assembly through cold flows and mergers
title_fullStr The impact of ISM turbulence, clustered star formation and feedback on galaxy mass assembly through cold flows and mergers
title_full_unstemmed The impact of ISM turbulence, clustered star formation and feedback on galaxy mass assembly through cold flows and mergers
title_short The impact of ISM turbulence, clustered star formation and feedback on galaxy mass assembly through cold flows and mergers
title_sort impact of ism turbulence clustered star formation and feedback on galaxy mass assembly through cold flows and mergers
work_keys_str_mv AT powelll theimpactofismturbulenceclusteredstarformationandfeedbackongalaxymassassemblythroughcoldflowsandmergers
AT bournaudf theimpactofismturbulenceclusteredstarformationandfeedbackongalaxymassassemblythroughcoldflowsandmergers
AT chapond theimpactofismturbulenceclusteredstarformationandfeedbackongalaxymassassemblythroughcoldflowsandmergers
AT devriendtj theimpactofismturbulenceclusteredstarformationandfeedbackongalaxymassassemblythroughcoldflowsandmergers
AT slyza theimpactofismturbulenceclusteredstarformationandfeedbackongalaxymassassemblythroughcoldflowsandmergers
AT teyssierr theimpactofismturbulenceclusteredstarformationandfeedbackongalaxymassassemblythroughcoldflowsandmergers
AT powelll impactofismturbulenceclusteredstarformationandfeedbackongalaxymassassemblythroughcoldflowsandmergers
AT bournaudf impactofismturbulenceclusteredstarformationandfeedbackongalaxymassassemblythroughcoldflowsandmergers
AT chapond impactofismturbulenceclusteredstarformationandfeedbackongalaxymassassemblythroughcoldflowsandmergers
AT devriendtj impactofismturbulenceclusteredstarformationandfeedbackongalaxymassassemblythroughcoldflowsandmergers
AT slyza impactofismturbulenceclusteredstarformationandfeedbackongalaxymassassemblythroughcoldflowsandmergers
AT teyssierr impactofismturbulenceclusteredstarformationandfeedbackongalaxymassassemblythroughcoldflowsandmergers