The fields and self-force of a constantly accelerating spherical shell

We present a partial differential equation describing the electromagnetic potentials around a charge distribution undergoing rigid motion at constant proper acceleration, and obtain a set of solutions to this equation. These solutions are used to find the self-force exactly in a chosen case. The ele...

Full description

Bibliographic Details
Main Author: Steane, A
Format: Journal article
Language:English
Published: 2014
Description
Summary:We present a partial differential equation describing the electromagnetic potentials around a charge distribution undergoing rigid motion at constant proper acceleration, and obtain a set of solutions to this equation. These solutions are used to find the self-force exactly in a chosen case. The electromagnetic self-force for a spherical shell of charge of proper radius R undergoing rigid motion at constant proper acceleration a0 is, to high-order approximation, (2e2a0/R) ∑∞n=0 (a0R)2n((2n - 1)(2n + 1)2(2n + 3))-1, and this is conjectured to be exact. © 2013 The Author(s) Published by the Royal Society. All rights reserved.