Extracting angles of attack from blade-resolved rotor CFD simulations

The distribution of the angles of attack over the span of a rotor blade, together with blade element theory, provides a useful framework to understand forces, performance and other fluid dynamic phenomena of axial‐flow rotors. However, the angle of attack is not straightforward to define for a three...

Full description

Bibliographic Details
Main Authors: Vogel, C, Zilic de Arcos, F, Willden, R
Format: Journal article
Language:English
Published: Wiley 2020
_version_ 1797052923038924800
author Vogel, C
Zilic de Arcos, F
Willden, R
author_facet Vogel, C
Zilic de Arcos, F
Willden, R
author_sort Vogel, C
collection OXFORD
description The distribution of the angles of attack over the span of a rotor blade, together with blade element theory, provides a useful framework to understand forces, performance and other fluid dynamic phenomena of axial‐flow rotors. However, the angle of attack is not straightforward to define for a three‐dimensional rotor, where the flow is perturbed by the blade circulation, shed vorticity and wake development. <br><br/> This paper evaluates six methods to extract the angles of attack from blade‐resolved CFD simulations of axial‐flow turbines. Simulations of two different rotors are presented: a low solidity rotor designed for wind and a higher solidity rotor designed for tidal stream energy conversion. Of the analysed methods, five were obtained from the literature and are tested in terms of their internal parameters. The remaining method is named the streamtube analysis method (SAM) and is presented as an improvement on analysis methods that azimuthally average the flow data on the rotor plane, referred to as azimuthal averaging techniques (AATs). The SAM method accounts for the expansion of the streamtubes in flow‐field velocity sampling and exhibits improved convergence on the internal parameters compared with AAT. <br><br/> The six methods are benchmarked in terms of the angles of attack, axial induction factors and the local lift and drag coefficients, identifying that most perform well and converge with each other despite the different underlying assumptions or modelling approaches. However, given the limitations and inherent dependency on internal parameters, the line averaging and SAM are suggested for general flow analysis application.
first_indexed 2024-03-06T18:37:23Z
format Journal article
id oxford-uuid:0bb4b689-6375-4de1-9c6b-3e000460b330
institution University of Oxford
language English
last_indexed 2024-03-06T18:37:23Z
publishDate 2020
publisher Wiley
record_format dspace
spelling oxford-uuid:0bb4b689-6375-4de1-9c6b-3e000460b3302022-03-26T09:30:56ZExtracting angles of attack from blade-resolved rotor CFD simulationsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:0bb4b689-6375-4de1-9c6b-3e000460b330EnglishSymplectic ElementsWiley2020Vogel, CZilic de Arcos, FWillden, RThe distribution of the angles of attack over the span of a rotor blade, together with blade element theory, provides a useful framework to understand forces, performance and other fluid dynamic phenomena of axial‐flow rotors. However, the angle of attack is not straightforward to define for a three‐dimensional rotor, where the flow is perturbed by the blade circulation, shed vorticity and wake development. <br><br/> This paper evaluates six methods to extract the angles of attack from blade‐resolved CFD simulations of axial‐flow turbines. Simulations of two different rotors are presented: a low solidity rotor designed for wind and a higher solidity rotor designed for tidal stream energy conversion. Of the analysed methods, five were obtained from the literature and are tested in terms of their internal parameters. The remaining method is named the streamtube analysis method (SAM) and is presented as an improvement on analysis methods that azimuthally average the flow data on the rotor plane, referred to as azimuthal averaging techniques (AATs). The SAM method accounts for the expansion of the streamtubes in flow‐field velocity sampling and exhibits improved convergence on the internal parameters compared with AAT. <br><br/> The six methods are benchmarked in terms of the angles of attack, axial induction factors and the local lift and drag coefficients, identifying that most perform well and converge with each other despite the different underlying assumptions or modelling approaches. However, given the limitations and inherent dependency on internal parameters, the line averaging and SAM are suggested for general flow analysis application.
spellingShingle Vogel, C
Zilic de Arcos, F
Willden, R
Extracting angles of attack from blade-resolved rotor CFD simulations
title Extracting angles of attack from blade-resolved rotor CFD simulations
title_full Extracting angles of attack from blade-resolved rotor CFD simulations
title_fullStr Extracting angles of attack from blade-resolved rotor CFD simulations
title_full_unstemmed Extracting angles of attack from blade-resolved rotor CFD simulations
title_short Extracting angles of attack from blade-resolved rotor CFD simulations
title_sort extracting angles of attack from blade resolved rotor cfd simulations
work_keys_str_mv AT vogelc extractinganglesofattackfrombladeresolvedrotorcfdsimulations
AT zilicdearcosf extractinganglesofattackfrombladeresolvedrotorcfdsimulations
AT willdenr extractinganglesofattackfrombladeresolvedrotorcfdsimulations