Microbial competition in porous environments can select against rapid biofilm growth
Microbes often live in dense communities called biofilms where competition between strains and species is fundamental to both evolution and community function. While biofilms are commonly found in soil-like porous environments, the study of microbial interactions has largely focused on biofilms grow...
Main Authors: | , , , , |
---|---|
Format: | Journal article |
Published: |
National Academy of Sciences
2016
|
_version_ | 1797053074682937344 |
---|---|
author | Coyte, K Tabuteau, H Gaffney, E Foster, K Durham, W |
author_facet | Coyte, K Tabuteau, H Gaffney, E Foster, K Durham, W |
author_sort | Coyte, K |
collection | OXFORD |
description | Microbes often live in dense communities called biofilms where competition between strains and species is fundamental to both evolution and community function. While biofilms are commonly found in soil-like porous environments, the study of microbial interactions has largely focused on biofilms growing on flat, planar surfaces. Here we use novel microfluidic experiments, mechanistic models, and game theory to study how porous media hydrodynamics can mediate competition between bacterial genotypes. Our experiments reveal a fundamental challenge faced by microbial strains that live in porous environments: cells that rapidly form biofilms tend to block their access to fluid flow and redirect resources to competitors. To understand how these dynamics influence the evolution of bacterial growth rates we couple a model of flow-biofilm interaction with a game theory analysis. This shows that hydrodynamic interactions between competing genotypes give rise to an evolutionarily stable growth rate that stands in stark contrast with that observed in typical laboratory experiments: cells within a biofilm can outcompete other genotypes by growing more slowly. Our work reveals that hydrodynamics can profoundly affect how bacteria compete and evolve in porous environments, the habitat where most bacteria live. |
first_indexed | 2024-03-06T18:38:57Z |
format | Journal article |
id | oxford-uuid:0c3cb73c-1bd3-4600-acbf-483f03c60f3f |
institution | University of Oxford |
last_indexed | 2024-03-06T18:38:57Z |
publishDate | 2016 |
publisher | National Academy of Sciences |
record_format | dspace |
spelling | oxford-uuid:0c3cb73c-1bd3-4600-acbf-483f03c60f3f2022-03-26T09:33:51ZMicrobial competition in porous environments can select against rapid biofilm growthJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:0c3cb73c-1bd3-4600-acbf-483f03c60f3fSymplectic Elements at OxfordNational Academy of Sciences2016Coyte, KTabuteau, HGaffney, EFoster, KDurham, WMicrobes often live in dense communities called biofilms where competition between strains and species is fundamental to both evolution and community function. While biofilms are commonly found in soil-like porous environments, the study of microbial interactions has largely focused on biofilms growing on flat, planar surfaces. Here we use novel microfluidic experiments, mechanistic models, and game theory to study how porous media hydrodynamics can mediate competition between bacterial genotypes. Our experiments reveal a fundamental challenge faced by microbial strains that live in porous environments: cells that rapidly form biofilms tend to block their access to fluid flow and redirect resources to competitors. To understand how these dynamics influence the evolution of bacterial growth rates we couple a model of flow-biofilm interaction with a game theory analysis. This shows that hydrodynamic interactions between competing genotypes give rise to an evolutionarily stable growth rate that stands in stark contrast with that observed in typical laboratory experiments: cells within a biofilm can outcompete other genotypes by growing more slowly. Our work reveals that hydrodynamics can profoundly affect how bacteria compete and evolve in porous environments, the habitat where most bacteria live. |
spellingShingle | Coyte, K Tabuteau, H Gaffney, E Foster, K Durham, W Microbial competition in porous environments can select against rapid biofilm growth |
title | Microbial competition in porous environments can select against rapid biofilm growth |
title_full | Microbial competition in porous environments can select against rapid biofilm growth |
title_fullStr | Microbial competition in porous environments can select against rapid biofilm growth |
title_full_unstemmed | Microbial competition in porous environments can select against rapid biofilm growth |
title_short | Microbial competition in porous environments can select against rapid biofilm growth |
title_sort | microbial competition in porous environments can select against rapid biofilm growth |
work_keys_str_mv | AT coytek microbialcompetitioninporousenvironmentscanselectagainstrapidbiofilmgrowth AT tabuteauh microbialcompetitioninporousenvironmentscanselectagainstrapidbiofilmgrowth AT gaffneye microbialcompetitioninporousenvironmentscanselectagainstrapidbiofilmgrowth AT fosterk microbialcompetitioninporousenvironmentscanselectagainstrapidbiofilmgrowth AT durhamw microbialcompetitioninporousenvironmentscanselectagainstrapidbiofilmgrowth |