On local non-zero constraints in PDE with analytic coefficients

We consider the Helmholtz equation with real analytic coefficients on a bounded domain $\Omega\subset\mathbb{R}^{d}$. We take $d+1$ prescribed boundary conditions $f^{i}$ and frequencies $\omega$ in a fixed interval $[a,b]$. We consider a constraint on the solutions $u_{\omega}^{i}$ of the form $\ze...

Full description

Bibliographic Details
Main Authors: Alberti, G, Capdeboscq, Y
Format: Journal article
Published: 2015
_version_ 1797053213306781696
author Alberti, G
Capdeboscq, Y
author_facet Alberti, G
Capdeboscq, Y
author_sort Alberti, G
collection OXFORD
description We consider the Helmholtz equation with real analytic coefficients on a bounded domain $\Omega\subset\mathbb{R}^{d}$. We take $d+1$ prescribed boundary conditions $f^{i}$ and frequencies $\omega$ in a fixed interval $[a,b]$. We consider a constraint on the solutions $u_{\omega}^{i}$ of the form $\zeta(u_{\omega}^{1},\ldots,u_{\omega}^{d+1},\nabla u_{\omega}^{1},\ldots,\nabla u_{\omega}^{d+1})\neq0$, where $\zeta$ is analytic, which is satisfied in $\Omega$ when $\omega=0$. We show that for any $\Omega^{\prime}\Subset\Omega$ and almost any $d+1$ frequencies $\omega_{k}$ in $[a,b]$, there exist $d+1$ subdomains $\Omega_{k}$ such that $\Omega^{\prime}\subset\cup_{k}\Omega_{k}$ and $\zeta(u_{\omega_{k}}^{1},\ldots,u_{\omega_{k}}^{d+1},\nabla u_{\omega_{k}}^{1},\ldots,\nabla u_{\omega_{k}}^{d+1})\neq0$ in $\Omega_{k}$. This question comes from hybrid imaging inverse problems. The method used is not specific to the Helmholtz model and can be applied to other frequency dependent problems.
first_indexed 2024-03-06T18:40:48Z
format Journal article
id oxford-uuid:0ccbe46d-e17e-4855-b860-945400113f52
institution University of Oxford
last_indexed 2024-03-06T18:40:48Z
publishDate 2015
record_format dspace
spelling oxford-uuid:0ccbe46d-e17e-4855-b860-945400113f522022-03-26T09:36:55ZOn local non-zero constraints in PDE with analytic coefficientsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:0ccbe46d-e17e-4855-b860-945400113f52Symplectic Elements at Oxford2015Alberti, GCapdeboscq, YWe consider the Helmholtz equation with real analytic coefficients on a bounded domain $\Omega\subset\mathbb{R}^{d}$. We take $d+1$ prescribed boundary conditions $f^{i}$ and frequencies $\omega$ in a fixed interval $[a,b]$. We consider a constraint on the solutions $u_{\omega}^{i}$ of the form $\zeta(u_{\omega}^{1},\ldots,u_{\omega}^{d+1},\nabla u_{\omega}^{1},\ldots,\nabla u_{\omega}^{d+1})\neq0$, where $\zeta$ is analytic, which is satisfied in $\Omega$ when $\omega=0$. We show that for any $\Omega^{\prime}\Subset\Omega$ and almost any $d+1$ frequencies $\omega_{k}$ in $[a,b]$, there exist $d+1$ subdomains $\Omega_{k}$ such that $\Omega^{\prime}\subset\cup_{k}\Omega_{k}$ and $\zeta(u_{\omega_{k}}^{1},\ldots,u_{\omega_{k}}^{d+1},\nabla u_{\omega_{k}}^{1},\ldots,\nabla u_{\omega_{k}}^{d+1})\neq0$ in $\Omega_{k}$. This question comes from hybrid imaging inverse problems. The method used is not specific to the Helmholtz model and can be applied to other frequency dependent problems.
spellingShingle Alberti, G
Capdeboscq, Y
On local non-zero constraints in PDE with analytic coefficients
title On local non-zero constraints in PDE with analytic coefficients
title_full On local non-zero constraints in PDE with analytic coefficients
title_fullStr On local non-zero constraints in PDE with analytic coefficients
title_full_unstemmed On local non-zero constraints in PDE with analytic coefficients
title_short On local non-zero constraints in PDE with analytic coefficients
title_sort on local non zero constraints in pde with analytic coefficients
work_keys_str_mv AT albertig onlocalnonzeroconstraintsinpdewithanalyticcoefficients
AT capdeboscqy onlocalnonzeroconstraintsinpdewithanalyticcoefficients