COSMOS2015 photometric redshifts probe the impact of filaments on galaxy properties
The variation of galaxy stellar masses and colour types with the distance to projected cosmic filaments are quantified using the precise photometric redshifts of the COSMOS2015 catalogue extracted from Cosmological Evolution Survey (COSMOS) field (2 deg2). Realistic mock catalogues are also extracte...
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Oxford University Press
2017
|
_version_ | 1826314464978272256 |
---|---|
author | Laigle, C Pichon, C Arnouts, S McCracken, HJ Dubois, Y Devriendt, J Slyz, A Le Borgne, D Benoit-Lévy, A Hwang, HS Ilbert, O Kraljic, K Malavasi, N Park, C Vibert, D |
author_facet | Laigle, C Pichon, C Arnouts, S McCracken, HJ Dubois, Y Devriendt, J Slyz, A Le Borgne, D Benoit-Lévy, A Hwang, HS Ilbert, O Kraljic, K Malavasi, N Park, C Vibert, D |
author_sort | Laigle, C |
collection | OXFORD |
description | The variation of galaxy stellar masses and colour types with the distance to projected cosmic filaments are quantified using the precise photometric redshifts of the COSMOS2015 catalogue extracted from Cosmological Evolution Survey (COSMOS) field (2 deg2). Realistic mock catalogues are also extracted from the lightcone of the cosmological hydrodynamical simulation Horizon-AGN. They show that the photometric redshift accuracy of the observed catalogue (σz < 0.015 at M* > 1010M⊙ and z < 0.9) is sufficient to provide two-dimensional (2D) filaments that closely match their projected three-dimensional (3D) counterparts. Transverse stellar mass gradients are measured in projected slices of thickness 75 Mpc between 0.5 < z < 0.9, showing that the most massive galaxies are statistically closer to their neighbouring filament. At fixed stellar mass, passive galaxies are also found closer to their filament, while active star-forming galaxies statistically lie further away. The contributions of nodes and local density are removed from these gradients to highlight the specific role played by the geometry of the filaments. We find that the measured signal does persist after this removal, clearly demonstrating that proximity to a filament is not equivalent to proximity to an overdensity. These findings are in agreement with gradients measured in both 2D and 3D in the Horizon-AGN simulation and those observed in the spectroscopic surveys VIPERS and GAMA (which both rely on the identification of 3D filaments). They are consistent with a picture in which the influence of the geometry of the large-scale environment drives anisotropic tides that impact the assembly history of galaxies, and hence their observed properties. |
first_indexed | 2024-03-06T18:41:13Z |
format | Journal article |
id | oxford-uuid:0cede42b-3399-4e94-a635-01612921ff0e |
institution | University of Oxford |
language | English |
last_indexed | 2024-09-25T04:34:29Z |
publishDate | 2017 |
publisher | Oxford University Press |
record_format | dspace |
spelling | oxford-uuid:0cede42b-3399-4e94-a635-01612921ff0e2024-09-17T12:21:02ZCOSMOS2015 photometric redshifts probe the impact of filaments on galaxy propertiesJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:0cede42b-3399-4e94-a635-01612921ff0eEnglishSymplectic Elements at OxfordOxford University Press2017Laigle, CPichon, CArnouts, SMcCracken, HJDubois, YDevriendt, JSlyz, ALe Borgne, DBenoit-Lévy, AHwang, HSIlbert, OKraljic, KMalavasi, NPark, CVibert, DThe variation of galaxy stellar masses and colour types with the distance to projected cosmic filaments are quantified using the precise photometric redshifts of the COSMOS2015 catalogue extracted from Cosmological Evolution Survey (COSMOS) field (2 deg2). Realistic mock catalogues are also extracted from the lightcone of the cosmological hydrodynamical simulation Horizon-AGN. They show that the photometric redshift accuracy of the observed catalogue (σz < 0.015 at M* > 1010M⊙ and z < 0.9) is sufficient to provide two-dimensional (2D) filaments that closely match their projected three-dimensional (3D) counterparts. Transverse stellar mass gradients are measured in projected slices of thickness 75 Mpc between 0.5 < z < 0.9, showing that the most massive galaxies are statistically closer to their neighbouring filament. At fixed stellar mass, passive galaxies are also found closer to their filament, while active star-forming galaxies statistically lie further away. The contributions of nodes and local density are removed from these gradients to highlight the specific role played by the geometry of the filaments. We find that the measured signal does persist after this removal, clearly demonstrating that proximity to a filament is not equivalent to proximity to an overdensity. These findings are in agreement with gradients measured in both 2D and 3D in the Horizon-AGN simulation and those observed in the spectroscopic surveys VIPERS and GAMA (which both rely on the identification of 3D filaments). They are consistent with a picture in which the influence of the geometry of the large-scale environment drives anisotropic tides that impact the assembly history of galaxies, and hence their observed properties. |
spellingShingle | Laigle, C Pichon, C Arnouts, S McCracken, HJ Dubois, Y Devriendt, J Slyz, A Le Borgne, D Benoit-Lévy, A Hwang, HS Ilbert, O Kraljic, K Malavasi, N Park, C Vibert, D COSMOS2015 photometric redshifts probe the impact of filaments on galaxy properties |
title | COSMOS2015 photometric redshifts probe the impact of filaments on galaxy properties |
title_full | COSMOS2015 photometric redshifts probe the impact of filaments on galaxy properties |
title_fullStr | COSMOS2015 photometric redshifts probe the impact of filaments on galaxy properties |
title_full_unstemmed | COSMOS2015 photometric redshifts probe the impact of filaments on galaxy properties |
title_short | COSMOS2015 photometric redshifts probe the impact of filaments on galaxy properties |
title_sort | cosmos2015 photometric redshifts probe the impact of filaments on galaxy properties |
work_keys_str_mv | AT laiglec cosmos2015photometricredshiftsprobetheimpactoffilamentsongalaxyproperties AT pichonc cosmos2015photometricredshiftsprobetheimpactoffilamentsongalaxyproperties AT arnoutss cosmos2015photometricredshiftsprobetheimpactoffilamentsongalaxyproperties AT mccrackenhj cosmos2015photometricredshiftsprobetheimpactoffilamentsongalaxyproperties AT duboisy cosmos2015photometricredshiftsprobetheimpactoffilamentsongalaxyproperties AT devriendtj cosmos2015photometricredshiftsprobetheimpactoffilamentsongalaxyproperties AT slyza cosmos2015photometricredshiftsprobetheimpactoffilamentsongalaxyproperties AT leborgned cosmos2015photometricredshiftsprobetheimpactoffilamentsongalaxyproperties AT benoitlevya cosmos2015photometricredshiftsprobetheimpactoffilamentsongalaxyproperties AT hwanghs cosmos2015photometricredshiftsprobetheimpactoffilamentsongalaxyproperties AT ilberto cosmos2015photometricredshiftsprobetheimpactoffilamentsongalaxyproperties AT kraljick cosmos2015photometricredshiftsprobetheimpactoffilamentsongalaxyproperties AT malavasin cosmos2015photometricredshiftsprobetheimpactoffilamentsongalaxyproperties AT parkc cosmos2015photometricredshiftsprobetheimpactoffilamentsongalaxyproperties AT vibertd cosmos2015photometricredshiftsprobetheimpactoffilamentsongalaxyproperties |